Get Answers to all your Questions

header-bg qa

Explain solution for  RD Sharma Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 25 Subquestion (ii) maths textbook solution.

Answers (1)

Answer:- 0

Hints:-  You must know the integral rules of logarithmic functions.

Given:-  \int_{-\pi}^{\pi}\left(1-x^{2}\right) \sin x \cdot \cos ^{2} x \cdot d x

Solution : \int_{-\pi}^{\pi}\left(1-x^{2}\right) \sin x \cdot \cos ^{2} x \cdot d x=f(x)

                \begin{aligned} &f(-x)=-\left(1-x^{2}\right) \sin x \cdot \cos ^{2} x\\ &=-f(x) \text {, is an odd function }\\ &I=\int_{-\pi}^{\pi}\left(1-x^{2}\right) \sin x \cdot \cos ^{2} x . d x=0 \end{aligned}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads