Get Answers to all your Questions

header-bg qa

Explain solution for  RD Sharma Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 43 maths textbook solution.

Answers (1)

Answer:-  Proved

Hints:-  You must know the rules of continuous integral functions.

Given:-  f(2 a-x)=f(x)

Prove : \int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x

Solution : \int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x

So L.H.S,

            \int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x                                   ....(1)

Let    x=2 a-t \; \; \; \; \; \; \; \; \; \quad \text { when, } x=2 a, t=0

         dx=-dt \; \; \; \; \; \; \; \; \; \; \; \; \; \; x = a, t=a

Subscription

    \int_{0}^{2 a} f(x) d x=-\int_{a}^{0} f(2 a-t) d t

Using the property of integration                                      \left[\int_{0}^{b} f(x) d x=-\int_{b}^{a} f(x) d t\right]

Substituting in eq (1)                                                        \left[\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(2 a-t) d t\right]

               \int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{2 a} f(2 a-x) d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int_{0}^{2 a} f(x) d x=\int_{0}^{2 a} f(2 a-x) d x\right]

Now using the property

       \begin{aligned} &\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)+g(x) \cdot d x \\ &\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x)+f(2 a-x) \cdot d x \end{aligned}

Since f(2a-x)=f(x)

    \begin{aligned} &\therefore \int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x)+f(x) \cdot dx \\ &\therefore \int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x \end{aligned}

Hence proved

 

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads