Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 19 Definite Integrals  Exercise 19.1 Question 43 Maths Textbook Solution.

Answers (1)

Answer:

\pi

Hint: Use indefinite formula and put the limits to solve this integral

Given:

\int_{0}^{4}\frac{1}{\sqrt{4x-x^{2}}}dx

Solution:

\int_{0}^{4}\frac{1}{\sqrt{4x-x^{2}}}dx=\int_{0}^{4}\frac{1}{\sqrt-{\left ( x^{2}-2.2x+\left ( 2 \right )^{2}-\left ( 2 \right )^{2} \right )}}dx

=\int_{0}^{4}\frac{1}{\sqrt-{\left \{ \left ( x-2 \right )^{2}-4 \right \}}}dx

                                                                            \left [ \because \left ( a-b \right )^{2}=a^{2}-2ab+b^{2} \right ]

=\int_{0}^{4} \frac{1}{\sqrt{4-(x-2)^{2}}} d x

=\int_{0}^{4} \frac{1}{\sqrt{2^{2}-(x-2)^{2}}} d x\left[\because \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)\right]

=\left[\sin ^{-1}\left(\frac{x-2}{2}\right)\right]_{0}^{4}

=\left[\sin ^{-1}\left(\frac{4-2}{2}\right)-\sin ^{-1}\left(\frac{0-2}{2}\right)\right]

=\left[\sin ^{-1}\left(\frac{2}{2}\right)-\sin ^{-1}\left(\frac{-2}{2}\right)\right]

=\left[\sin ^{-1}(1)-\sin ^{-1}(-1)\right]

=\left[\sin ^{-1}(1)+\sin ^{-1}(1)\right]\left[\because \sin ^{-1}(-\theta)=-\sin \theta\right]

=2 \sin ^{-1}(1)

=2.\frac{\pi }{2}

=\pi

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads