Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 19 Definite Integrals  Exercise 19.1 Question 44 Maths Textbook Solution.

Answers (1)

Answer:

\frac{\pi }{8}

Hint: Use indefinite formula and put the limits to solve this integral

Given:

\int_{-1}^{1}\frac{1}{x^{2}+2x+5}dx

Solution:

\int_{-1}^{1}\frac{1}{x^{2}+2x+5}dx=\int_{-1}^{1}\frac{1}{x^{2}+2x+4+1}dx

=\int_{-1}^{1} \frac{1}{\left(x^{2}+2 x+1\right)+4} d x

=\int_{-1}^{1} \frac{1}{(x+1)^{2}+2^{2}} d x

=\frac{1}{2}\left[\tan ^{-1}\left(\frac{x+1}{2}\right)\right]_{-1}^{1}

=\frac{1}{2}\left[\tan ^{-1}\left(\frac{1+1}{2}\right)-\tan ^{-1}\left(\frac{-1+1}{2}\right)\right]

=\frac{1}{2}\left[\tan ^{-1}\left(\frac{2}{2}\right)-\tan ^{-1}\left(\frac{0}{2}\right)\right]

=\frac{1}{2}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right]

=\frac{1}{2}\left[\frac{\pi}{4}-0\right]

                                                                                                                                        \left [ \because \tan ^{-1}\left ( 1 \right )=\frac{\pi }{4},\tan ^{-1}\left ( 0 \right ) =0\right ]

=\frac{\pi }{8}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads