Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 19 Definite Integrals Exercise Revision Exercise question 55

Answers (1)

Answer:  0

Hint: In this equation we use  f\left ( x \right )= -f\left ( x \right )

Given:  \int_{-\pi}^{\pi} x^{10} \sin ^{7} x d x

Solution:

\begin{aligned} &I=f(x) \Rightarrow-f(x) \\ & \end{aligned}

\int_{-a}^{a} f(x) d x=0 \\

I=\int_{-\pi}^{\pi} x^{10} \sin ^{7} x d x

\begin{aligned} &I=\int_{-\pi}^{\pi} x^{10} \sin ^{7} x d x \\ & \end{aligned}

f(x)=x^{10} \sin ^{7} x d x \\

\begin{aligned} &f(-x)=(-x)^{10} \sin ^{7}(-x) d x \\ & \end{aligned}

f(-x)=-x^{10} \sin ^{7} x \\

f(-x)=-f(x) \\

\int_{-a}^{a} f(x) d x=0 \\

\int_{-\pi}^{\pi} x^{10} \sin ^{7} x d x=0

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads