Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 19 Definite Integrals Exercise Revision Exercise question 67

Answers (1)

Answer:  \frac{62}{3}

Hint: To solve the given statement we have to integrate them individually.

Given: \int_{1}^{3}\left(x^{2}+3 x\right) d x

Solution:

\begin{aligned} &\int_{1}^{3}\left(x^{2}+3 x\right) d x \\ &\int_{1}^{3}\left(x^{2}+3 x\right) d x \\ &=\int_{1}^{3} x^{2} d x+\int_{1}^{3} 3 x d x \end{aligned}

\begin{aligned} &=\left[\frac{x^{3}}{3}\right]_{1}^{3}+3\left[\frac{x^{2}}{2}\right]_{1}^{3} \\ &=\frac{27-1}{3}+3\left[\frac{9-1}{2}\right] \\ &=\frac{26}{3}+\frac{24}{2} \\ &=\frac{26+36}{3} \\ &=\frac{62}{3} \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads