Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 19 Definite Integrals Exercise Revision Exercise question 68

Answers (1)

Answer: \frac{20}{3}

Hint: To solve the given statement we have to integrate them individually

Given:  \int_{0}^{2}\left(x^{2}+2\right) d x

Solution:  \int_{0}^{2}\left(x^{2}+2\right) d x

\begin{aligned} &=\int_{0}^{2} x^{2} d x+\int_{0}^{2} 2 d x \\ &=\left[\frac{x^{3}}{3}\right]_{0}^{2}+[2 x]_{0}^{2} \\ &=\frac{8}{3}+4 \\ &=\frac{8+12}{3} \\ &=\frac{20}{3} \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads