Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 19 definite Integrals Exercise 19.1 Question 14 Maths Textbook Solution.

Answers (1)

Answer:2log2-1

Hint: Use indefinite formula then put the limit to get the required answer

Given: \int_{0}^{1}\left ( \frac{1-x}{1+x} \right )dx

Solution:

\int_{0}^{1}\left ( \frac{1-x}{1+x} \right )dx

Put

\begin{aligned} &x=\cos 2 \theta \Rightarrow 2 \theta=\cos ^{-1} x \Rightarrow \theta=\frac{\cos ^{-1} x}{2} \\ &d x=-\sin 2 \theta(2) d \theta \Rightarrow d x=-2 \sin 2 \theta d \theta \end{aligned}

Whenx=0 then\theta =\frac{\pi }{2 }\times \frac{1}{2}=\frac{\pi }{4}

When x=1 then \theta =0

Then

\begin{aligned} &\int_{0}^{1}\left(\frac{1-x}{1+x}\right) d x=\int_{\frac{\pi}{4}}^{0} \frac{1-\cos 2 \theta}{1+\cos 2 \theta}(-2 \sin 2 \theta) d \theta \\ &=-\int_{\frac{\pi}{4}}^{0} \frac{2 \sin ^{2} \theta}{2 \cos ^{2} \theta} 2 \sin 2 \theta d \theta \end{aligned}                        \left[\begin{array}{l} 1+\cos 2 \theta=2 \cos ^{2} \theta \\ 1-\cos 2 \theta=2 \sin ^{2} \theta \end{array}\right]

\begin{aligned} &=\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2} \theta}{\cos ^{2} \theta} 2 \sin 2 \theta d \theta \quad\left[\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x\right] \\ &=\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2} \theta}{\cos ^{2} \theta} 2.2 \sin \theta \cos \theta d \theta \quad[\sin 2 \theta=2 \sin \theta \cos \theta] \\ &=4 \int_{0}^{\frac{\pi}{4}} \frac{\sin ^{3} \theta}{\cos \theta} d \theta \end{aligned}

Again put \cos \theta =t\Rightarrow \sin \theta d\theta =dt\Rightarrow d\theta =\frac{dt}{-\sin \theta }

When \theta =0 then t=2

And When \theta =\frac{\pi }{4} then t=\frac{1}{\sqrt{2}}

Then

\begin{aligned} &\int_{0}^{1} \frac{1-x}{1+x} d x=4 \int_{1}^{\frac{1}{\sqrt{2}}} \frac{\sin ^{3} \theta}{t} \frac{d t}{-\sin \theta}=-4 \int_{1}^{\frac{1}{\sqrt{2}}} \frac{\sin ^{2} \theta}{t} d t \\ &=-4 \int_{2}^{\frac{1}{\sqrt{2}} 1-\cos ^{2} t}{t} d t \end{aligned}

                                                \left [ \because \sin ^{2}\theta =1-\cos ^{2}\theta \right ]

\begin{aligned} &=-4 \int_{2}^{\frac{1}{\sqrt{2}} 1-t^{2}}{t} d t \\ &=-4 \int_{1}^{\frac{1}{\sqrt{2}}}\left(\frac{1}{t}-\frac{t^{2}}{t}\right) d t \\ &=-4 \int_{1}^{\frac{1}{\sqrt{2}}}\left(\frac{1}{t}-t\right) d t \\ &=-4 \int_{1}^{\frac{1}{\sqrt{2}} \frac{1}{t} d t+4 \int_{1}^{\frac{1}{\sqrt{2}}} t d t} \\ &=-4[\log |t|]_{1}^{\frac{1}{\sqrt{2}}}+4\left[\frac{t^{1+1}}{1+1}\right]_{1}^{\frac{1}{\sqrt{2}}} \end{aligned}

                                                                                                \left[\begin{array}{l} \int x^{n} d x=\frac{x^{n+1}}{n+1} \\ \int \frac{1}{x} d x=\log |x| \end{array}\right]

\begin{aligned} &=-4[\log |t|]_{1}^{\frac{1}{\sqrt{2}}}+4\left[\frac{t^{2}}{2}\right]_{1}^{\frac{1}{\sqrt{2}}} \\ &=-4\left[\log \frac{1}{\sqrt{2}}-\log 1\right]+2\left[\left(\frac{1}{\sqrt{2}}\right)^{2}-1^{2}\right] \\ &=-4 \log \frac{1}{\sqrt{2}}+2\left(\frac{1}{2}-1\right) \end{aligned}                                            \left [ log\; \; a^{m}=mlog\: a \right ]

\begin{aligned} &=-4 \log (\sqrt{2})^{-1}+2\left(-\frac{1}{2}\right) \\ &=-4(-\log \sqrt{2})-1 \\ &=4 \log \sqrt{2}-1=2 \log 2^{\frac{1}{2} \times 2}-1 \\ &=2 \log 2-1 \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads