Get Answers to all your Questions

header-bg qa

Need solution for  RD Sharma maths Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 35 textbook solution.

Answers (1)

Answer:-  \frac{2}{\pi}

Hints:-  You must know the rules of integration.

Given:-  \int_{-1}^{1}|x \cdot \cos \pi x| \cdot d x

Solution : f(x)=\int_{-1}^{1}|x \cdot \cos \pi x| \cdot d x

|f(x)|=f(x) \text { when } x \geq 0 \text { and }-f(x) \text { when } x<0

\text { When } f(x)=x \cos (\pi x) \text {, we have }

\begin{aligned} &|x \cos (\pi x)|=\left\{\begin{array}{l} x \cos (\pi x) ;-1 \leq x \leq 1 / 2 \\ -x \cos (\pi x) ;-1 / 2 \leq x<0 \\ x \cos \pi x ; 0 \leq x<1 / 2 \\ -x \cos (\pi x) ; 1 / 2 \leq x<1 \end{array}\right. \\ &I=\int_{-1}^{1}|x \cdot \cos \pi x| \cdot d x \end{aligned}

\\I=\int_{-1}^{-1 / 2} x \cdot \cos (\pi x)-\int_{-1 / 2}^{0} x \cdot \cos (\pi x) \cdot d x+\int_{0}^{1 / 2} x \cdot \cos (\pi x) \cdot d x-\int_{-1 / 2}^{1} x \cdot \cos (\pi x) \cdot d x

Now we can easily compile indefinite integral

\begin{aligned} I &=\int x \cdot \cos (\pi x) \cdot d x \\ &=\frac{x \cdot \cos (\pi x)}{\pi}+\frac{\cos (\pi x)}{\pi} \\ \end{aligned}

\therefore I^{\prime}=\left(I_{1 / 2}-I_{-1}\right)-\left(I_{0}-I_{-1 / 2}\right)+\left(I_{1 / 2}-I_{0}\right)-\left(I_{1}-I_{1 / 2}\right)

Where

\begin{gathered} I_{-1}=\frac{-1}{\pi^{2}} \\ I_{-1 / 2}=\frac{1}{2 \pi} \\ I_{0}=\frac{1}{\pi^{2}} \end{gathered}

\begin{aligned} &I_{1 / 2}=\frac{1}{2 \pi} \\ &I_{1}=\frac{-1}{\pi^{2}} \end{aligned}

Putting values

We get I=\frac{2}{\pi}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads