Get Answers to all your Questions

header-bg qa

Need solution for  RD Sharma maths Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 36 textbook solution.

Answers (1)

Answer:-  \frac{\pi^{2}}{2 \sqrt{2}}

Hints:-  You must know the integration rules of trigonometric functions.

Given:-  \int_{0}^{\pi} \frac{x}{1+\sin ^{2} x}+\cos ^{7} x \cdot d x

Solution : \int_{0}^{\pi} \frac{x}{1+\sin ^{2} x}+\cos ^{7} x \cdot d x                                 ....(1)

Then 

\begin{gathered} I=\int_{0}^{\pi} \frac{\pi-x}{1-\sin ^{2}(\pi-x)}+\cos ^{7}(\pi-x) \cdot d x \\ \quad I=\int_{0}^{\pi} \frac{\pi-x}{1+\sin ^{2} x}-\cos ^{7} x \cdot d x \end{gathered}              ....(2)

Adding (1) +(2)

\begin{aligned} &\left.2 I=\int_{0}^{\pi} \frac{x}{1+\sin ^{2} x}+\cos ^{7} x+\frac{\pi-x}{1+\sin ^{2} x}-\cos ^{7} x\right) \cdot d x \\ &2 I=\pi \int_{0}^{\pi} \frac{1}{1+\sin ^{2} x} d x \end{aligned}

Dividing numerator and denominator by \cos^{2} x

\begin{aligned} &2 I=\pi \int_{0}^{\pi} \frac{\sec ^{2} x}{\sec ^{2} x+\tan ^{2} x} \cdot d x \\ &2 I=\pi \int_{0}^{\pi} \frac{\sec ^{2} x}{1+2 \tan ^{2} x} \cdot d x \\ &2 I=\pi \int_{0}^{\pi / 2} \frac{\sec ^{2} x}{1+2 \tan ^{2} x} \cdot d x \end{aligned}                                          \left[\because \int_{0}^{2 a} f(x) d x=\int_{0}^{2} \int_{0}^{a} f(x)\right]

Put \tan x = z

Then \sec^{2}x.dx=dz\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \text{when}x\rightarrow 0,z\rightarrow 0

                                                                    x=\frac{\pi}{2},z\rightarrow \infty

\begin{aligned} &2 I=2 \pi \int_{0}^{\infty} \frac{d z}{1+(\sqrt{2} z)^{2}} \\ &\left.2 I=2 \pi \times \frac{\tan ^{-1} \sqrt{2} z}{\sqrt{2}}\right]_{0}^{\infty} \end{aligned}

\begin{aligned} &I=\frac{\pi}{\sqrt{2}} \times\left(\tan ^{-1} \infty-\tan ^{-1} 0\right) \\ &I=\frac{\pi}{\sqrt{2}} \times\left(\frac{\pi}{2}-0\right) \\ &I=\frac{\pi^{2}}{2 \sqrt{2}} \end{aligned}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads