Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 19 Definite Integrals exercise Multiple choice question 31

Answers (1)

best_answer

Answer:

\frac{\pi}{4}

Hint:

To solve this equation we should simplify cot x.

Given:

\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cot x} d x

Solution:

Let

\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cot x} d x

I=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\frac{\cos x}{\sin x}} d x, \quad\left[\therefore \cot x=\frac{\cos x}{\sin x}\right]

=\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\cos x+\sin x} d x \ldots(i), \quad\left[\therefore \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right]

=\int_{0}^{\frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)}{\cos \left(\frac{\pi}{2}-x\right)+\sin \left(\frac{\pi}{2}-x\right)} d x

=\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x+\sin x} d x \ldots(i i)

Adding (i) and (ii)

\begin{aligned} &2 I=\int_{0}^{\frac{\pi}{2}} \frac{\cos x+\sin x}{\cos x+\sin x} d x \\\\ &2 I=\int_{0}^{\frac{\pi}{2}} 1 d x \end{aligned}

\begin{aligned} &I=\frac{1}{2}[x]_{0}^{\frac{\pi}{2}} \\\\ &I=\frac{1}{2}\left[\frac{\pi}{2}-0\right] \\\\ &=\frac{\pi}{4} \end{aligned}

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads