Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise 19.4 Question 3 maths textbook solution.

Answers (1)

Answer : \frac{\pi}{12}

Given : \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}} d x

Hint : Use the formula of \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x

Solution : I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}} d x \quad-----(1)

\begin{aligned} &I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\tan \left(\frac{\pi}{3}+\frac{\pi}{6}-x\right)}}{\tan \left(\frac{\pi}{3}+\frac{\pi}{6}-x\right)+\sqrt{\cot \left(\frac{\pi}{3}+\frac{\pi}{6}-x\right)}} d x \\ &I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\tan \left(\frac{\pi}{2}-x\right)}}{\tan \left(\frac{\pi}{2}-x\right)}+\sqrt{\cot \left(\frac{\pi}{2}-x\right)} d x \\ &I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x \quad------(2) \end{aligned}

Add (1) and (2)

\begin{aligned} &2 I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}} d x+\frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x \\ &2 I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\tan x}+\sqrt{\cot x}}{\sqrt{\tan x}+\sqrt{\cot x}} d x \\ &2 I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 d x \end{aligned}

\begin{aligned} &2 I=(x)_{\frac{\pi}{6}}^{\frac{\pi}{3}} \\ &2 I=\frac{\pi}{6} \\ &I=\frac{\pi}{12} \end{aligned}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads