Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 45 Subquestion (i) maths textbook solution.

Answers (1)

Answer:-  Proved

Hints:-  You must know the rules of integration.

Given:-  If  f is an integral function, prove \int_{-a}^{a} f\left(x^{2}\right) d x=2 \int_{0}^{a} f\left(x^{2}\right) d x

Solution:-  f is an integrable function

                 \begin{aligned} &I=\int_{-a}^{a} f\left(x^{2}\right) d x \\ &f(x)=f\left(x^{2}\right) \\ &f(-x)=f\left(-x^{2}\right)=f\left(x^{2}\right) \end{aligned}

Hence it is an even function

Using integration property, if function is an even function

               \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x

Therefore,

            \int_{-a}^{a} f\left(x^{2}\right) d x=2 \int_{0}^{a} f\left(x^{2}\right) d x

Hence proved

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads