Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise 19.3 Question 1 Suquestion (ii) Maths Textbook Solution.

Answers (1)

Answer:  3-\frac{\pi}{2}+e^{6}

Hint: Break the range of integration from 0 \: to \: \frac{\pi}{2},\: \frac{\pi}{2} \: to\: 3, and then 3\: to \: 9

Given:

                        \int_{0}^{9} f(x) d x \text { where } f(x)=\left\{\begin{array}{ll} \sin x, & \text { if } 0 \leq x \leq \frac{\pi}{2} \\\\ 1, & \text { if } \frac{\pi}{2} \leq x \leq 3 \\\\ e^{x-3}, & \text { if } 3 \leq x \leq 9 \end{array}\right\}

Solution:

                        \int_{0}^{9} f(x) d x

                \begin{aligned} &=\int_{0}^{\frac{\pi}{2}} f(x) d x+\int_{\frac{\pi}{2}}^{3} f(x) d x+\int_{3}^{9} f(x) d x \\ & \end{aligned}

                =\int_{0}^{\frac{\pi}{2}} \sin x d x+\int_{\frac{\pi}{2}}^{3} 1 d x+\int_{3}^{9} e^{x-3} d x \\

                =[-\cos x]_{0}^{\frac{\pi}{2}}+[x]_{\frac{\pi}{2}}^{3}+\left[\frac{e^{x}}{e^{3}}\right]_{3}^{9}   

                \begin{aligned} &=-\cos \frac{\pi}{2}+\cos 0+3-\frac{\pi}{2}+\frac{e^{9}-e^{3}}{e^{3}} \\ & \end{aligned}

                =0+1+3-\frac{\pi}{2}+\frac{e^{3}\left(e^{6}-1\right)}{e^{3}} \\

                =4-\frac{\pi}{2}+e^{6}-1 \\

               =3-\frac{\pi}{2}+e^{6}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads