Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 28 maths textbook solution.

Answers (1)

Answer:- 0

Hints:-  You must know the integration rules of trignometry functions.

Given:-  \int_{-\pi / 2}^{\pi / 2} \log \left(\frac{2-\sin x}{2+\sin x}\right) d x

Solution : f(x)=\int_{-\pi / 2}^{\pi / 2} \log \left(\frac{2-\sin x}{2+\sin x}\right) d x

               \begin{aligned} f(-x) &=\log \left(\frac{2+\sin x}{2-\sin x}\right) d x \\ f(-x) &=-\log \left(\frac{2-\sin x}{2+\sin x}\right) d x \\ &=f(-x) \\ &=-f(x) \end{aligned}

\therefore f(x) is an odd function

                \therefore \int_{-\pi / 2}^{\pi / 2} \log \left(\frac{2-\sin x}{2+\sin x}\right) d x=0

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads