Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 19 Definite Integrals exercise Multiple choice question 9 maths textbook solution

Answers (1)

best_answer

Answer:

\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)

Given:

\int_{0}^{\frac{\pi}{2}} \frac{1}{2+\cos x} d x

Hint:

Using \int \frac{1}{1+x^{2}} d x
 

Explanation:  

Let

I=\int_{0}^{\frac{\pi}{2}} \frac{1}{2+\cos x} d x

Put

\begin{aligned} &\cos x=\frac{1-\tan ^{2} x / 2}{1+\tan ^{2} x / 2} \\\\ &=\int_{0}^{\frac{\pi}{2}} \frac{1}{2+\frac{1-\tan ^{2} x / 2}{1+\tan ^{2} x / 2}} d x \end{aligned}

=\int_{0}^{\frac{\pi}{2}} \frac{1+\tan ^{2} x / 2}{2\left(1+\tan ^{2} x / 2\right)+1-\tan ^{2} x / 2} d x

=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2 } x/ 2}{3+\tan ^{2} x / 2} d x

 \begin{aligned} &\text { Put } \tan ^{x} /_{2}=t \\\\ &\sec ^{2} x / 2 \cdot 1 / 2 d x=d t \\\\ &\sec ^{2} x /{ }_{2} d x=2 d t \end{aligned}

When x=0 then t= 0

When x=\frac{\pi }{2} then t=1

\begin{aligned} &=\int_{0}^{1} \frac{2 d t}{t^{2}+(\sqrt{3})^{2}} \\\\ &=2\left[\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{t}{\sqrt{3}}\right)\right]_{0}^{1} \\\\ &=\frac{2}{\sqrt{3}}\left[\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)-\tan ^{-1}(0)\right] \end{aligned}

\begin{aligned} &=\frac{2}{\sqrt{3}}\left[\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)-0\right] \\\\ &=\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \end{aligned}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads