Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 19 Definite Integrals exercise Very short answer type question 26 maths textbook solution

Answers (1)

Answer: \frac{1}{2}(e-1)

Hint: you must know the rule of integration for function of x

Given: \int_{0}^{1} x e^{x^{2}} d x

Solution:  

Put

        \begin{aligned} &x^{2}=t \\\\ &2 x d x=d t \\\\ &x d x=\frac{d t}{2} \end{aligned}

                \begin{aligned} &=\frac{1}{2} \int_{0}^{1} e^{t} d t \\\\ &=\frac{1}{2}\left[e^{t}\right]_{0}^{1} \end{aligned}

                \begin{aligned} &=\frac{1}{2}\left[e^{x^{2}}\right]_{0}^{1} \\\\ &=\frac{1}{2}\left[e^{1}-e^{0}\right] \\\\ &=\frac{1}{2}[e-1] \end{aligned}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads