Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 19 Definite Integrals Exercise Revision Exercise Question 19

Answers (1)

Answer:   \frac{2}{35}-\frac{9}{280 \sqrt{2}}

Given:   \int_{0}^{\frac{\pi}{4}} \cos ^{4} x \sin ^{3} x d x

Hint: Use trigonometric identities.

Solution:   \int_{0}^{\frac{\pi}{4}} \cos ^{4} x \sin ^{3} x d x

\begin{aligned} &=\int_{0}^{\frac{\pi}{4}} \cos ^{4} x \sin x\left(1-\cos ^{2} x\right) d x \\ & \end{aligned}

\left(\begin{array}{l} \because \sin ^{2} x+\cos ^{2} x=1 \\ \sin ^{2} x=1-\cos ^{2} x \end{array}\right)

\begin{aligned} &\text { Let } \\ & \end{aligned}

\cos x=t \\                          (Differentiate w.r.t to x)

-\sin x d x=d t

\begin{aligned} &=-\int_{0}^{\frac{\pi}{4}} t^{4}\left(1-t^{2}\right) d t \\ & \end{aligned}

=\int_{0}^{\frac{\pi}{4}} t^{4}\left(t^{2}-1\right) d t \\

=\int_{0}^{\frac{\pi}{4}}\left(t^{6}-t^{4}\right) d t=\left(\frac{t^{7}}{7}-\frac{t^{5}}{5}\right)_{0}^{\frac{\pi}{4}}

\begin{aligned} &=\left(\frac{\cos ^{7} x}{7}-\frac{\cos ^{5} x}{5}\right)_{0}^{\frac{\pi}{4}}=\frac{1}{(\sqrt{2})^{7}} \times \frac{1}{7}-\frac{1}{(\sqrt{2})^{5}} \times \frac{1}{5}-\frac{1}{7}+\frac{1}{5} \\ & \end{aligned}

=\frac{1}{56 \sqrt{2}}-\frac{1}{20 \sqrt{2}}+\frac{2}{35}

\begin{aligned} &=\frac{1}{4 \sqrt{2}}\left(\frac{1}{14}-\frac{1}{5}\right)+\frac{2}{35} \\ & \end{aligned}

=\frac{2}{35}+\frac{1}{4 \sqrt{2}}\left(\frac{5-14}{70}\right) \\

=\frac{2}{35}-\frac{9}{280 \sqrt{2}}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads