Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 19 Definite Integrals Exercise Revision Exercise Question 39

Answers (1)

Answer:  \frac{a}{2}

Hint: To solve this equation use formula  \int_{0}^{a} f(x) d x

Given:

\int_{0}^{a} f(x) d x

Solution:

\begin{aligned} &\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\\ & \end{aligned}

I=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{a-(a-x)}} d x\\                   ........(1)

I=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x                                     ........(2)

Adding (1) and (2)

I+I=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{a-(a-x)}} d x+\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x

\begin{aligned} &2 I=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{a+x}+\sqrt{x}} d x \\ & \end{aligned}

2 I=\int_{0}^{a} d x \\

2 I=(x)_{0}^{a}   

\begin{aligned} &\quad \Rightarrow a-0=a \\ & \end{aligned}

2 I=a \\

I=\frac{a}{2}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads