Get Answers to all your Questions

header-bg qa

Provide solution for  RD Sharma maths Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 12 textbook solution.

Answers (1)

Answer:- \frac{\pi}{5}

Hints:-  You must know the integration rules of trigonometric functions and its limits

Given:-  \int_{0}^{\pi} \sin x \cos ^{4} x \cdot d x

Solution : \int_{0}^{\pi} \sin x \cos ^{4} x \cdot d x=I                                            ......(1)

I=\int_{0}^{\pi}(\pi-x) \sin (\pi-x) \cos ^{4}(\pi-x) \cdot d x\\

\begin{aligned} &I=\int_{0}^{\pi}(\pi-x) \sin x \cos ^{4} x \cdot d x\\ \end{aligned}                                                     \text { .......(2) }[\because \sin (\pi-x)=\sin x]

\mathrm{Eq}(1)+\mathrm{Eg}(2) \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad[\cos (\pi-x)=-\cos x]

\begin{aligned} &2 I=\int_{0}^{\pi} x \sin x \cdot \cos ^{4} x d x+\int_{0}^{\pi}(\pi-x) \sin x \cdot \cos ^{4} x \cdot d x \\ &2 I=\int_{0}^{\pi} \pi \sin x \cdot \cos ^{4} x \cdot d x \end{aligned}

Let \sin x = t

\begin{aligned} &x=0, x=\pi \\ &t=0, t=0 \\ &\cos x d x=d t \\ &2 I=\int_{0}^{0} \text { No benefit. } \end{aligned}

Now, Let \cos x = t

                   \begin{aligned} &x=0, t=1 \\ &x=\pi, t=-1 \end{aligned}

                 \begin{aligned} &2 I=\int_{1}^{-1} \pi t^{4} d t \\ &I=\frac{-\pi}{2} \int_{1}^{-1} t^{4} d t \\ &I=\frac{-\pi}{2}\left[\frac{t^{5}}{5}\right]_{1}^{-1} \end{aligned}

                 \begin{aligned} &=\frac{-\pi}{2}\left[\frac{-1}{5}-\frac{1}{5}\right] \\ &=\frac{-\pi}{2}\left[\frac{-2}{5}\right] \\ &=\frac{\pi}{5} \end{aligned}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads