Get Answers to all your Questions

header-bg qa

Provide solution for  RD Sharma maths Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 15 textbook solution.

Answers (1)

Answer:- \frac{(\pi-2) \pi}{2}

Hints:-  You must know the integration rules of trigonometric rule.

Given:-   \int_{0}^{\pi} \frac{x \sin x}{1+\sin x} d x

Solution : \int_{0}^{\pi} \frac{x \sin x}{1+\sin x} d x

I=\int_{0}^{\pi} \frac{(\pi-x) x \sin (\pi-x)}{1+\sin (\pi-x)} d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\because \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right]

\begin{aligned} &I=\int_{0}^{\pi} \frac{\pi \sin x}{1+\sin x} d x-I \\ &2 I=\int_{0}^{\pi} \frac{\pi \sin x \cdot(1-\sin x)}{(1+\sin x)(1-\sin x)} d x \\ &2 I=\int_{0}^{\pi} \frac{\pi \sin x \cdot(1-\sin x)}{\left(1-\sin ^{2} x\right)} d x \end{aligned}

\begin{aligned} &\frac{2 I}{\pi}=\int_{0}^{\pi} \frac{\sin x-\sin ^{2} x}{\cos ^{2} x} d x \\ &\frac{2 I}{\pi}=\int_{0}^{\pi} \frac{\sin x}{\cos ^{2} x} d x-\int_{0}^{\pi} \frac{\sin ^{2} x}{\cos ^{2} x} d x \\ &\frac{2 I}{\pi}=\int_{0}^{\pi} \sec x \cdot \tan x \cdot d x-\int_{0}^{\pi} \tan ^{2} x \cdot d x \end{aligned}

\begin{aligned} &\frac{2 I}{\pi}=[\sec \pi-\sec 0]-\int_{0}^{\pi} \sec ^{2} x \cdot d x+\int_{0}^{\pi} 1 \cdot d x \\ &\frac{2 I}{\pi}=[-1-1]-[\tan ]_{0}^{\pi}-[x]_{0}^{\pi} \end{aligned}

\begin{aligned} &\frac{2 I}{\pi}=[-2]-[\tan \pi-\tan 0]+\pi \\ &\frac{2 I}{\pi}=[-2]-0+\pi \\ &\therefore I=\frac{(\pi-2) \pi}{2} \end{aligned}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads