Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 19 Definite Integrals Exercise Revision Exercise Question 58

Answers (1)

Answer:  \frac{-1}{2 \sqrt{5}} \log \left[\frac{2 \sqrt{5}-\sqrt{5}-3}{2 \sqrt{5}+\sqrt{5}-3}\right]

Hint: To solve this we convert  sin and cos into tan

Given:

\int_{0}^{\frac{\pi}{2}} \frac{1}{2 \cos x+4 \sin x} d x

Solution:

Let

\begin{aligned} &I=\int_{0}^{\frac{\pi}{2}} \frac{1}{2 \cos x+4 \sin x} d x \\ & \end{aligned}

I=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos x+2 \sin x} d x

 

=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}+4 \tan ^{2} \frac{x}{2}} d x

Let

\begin{aligned} &t=\tan ^{2} \frac{x}{2} \\ & \end{aligned}

\frac{d t}{d x}=\sec ^{2} \frac{x}{2} \times \frac{1}{2}

2 d t=\sec ^{2} \frac{x}{2} d x

Now

\begin{aligned} &\frac{1}{2} \times 2 \int_{0}^{1} \frac{d t}{1-t^{2}+4 t} \\ & \end{aligned}

I=-\int_{0}^{1} \frac{d t}{t^{2}-4 t-1} \\

I=-\int_{0}^{1} \frac{d t}{t^{2}-4 t-1+2^{2}-2^{2}}

\begin{aligned} &I=-\int_{0}^{1} \frac{d t}{(t-2)^{2}-(\sqrt{5})^{2}} \\ & \end{aligned}

I=\frac{-1}{2 \sqrt{5}} \log \left|\frac{t-2-\sqrt{5}}{t-2+\sqrt{5}}\right|_{0}^{1} \\

I=\frac{-1}{2 \sqrt{5}} \log \left|\frac{-1-\sqrt{5}}{-1+\sqrt{5}}\right|-\log \left|\frac{-2-\sqrt{5}}{-2+\sqrt{5}}\right|

\begin{aligned} &=\frac{-1}{2 \sqrt{5}} \log \left[\left|\frac{-1-\sqrt{5}}{-1+\sqrt{5}}\right| \times\left|\frac{-2-\sqrt{5}}{-2-\sqrt{5}}\right|\right] \\ & \end{aligned}

=\frac{-1}{2 \sqrt{5}} \log \left(\frac{2-\sqrt{5}+2 \sqrt{5}-5}{2+\sqrt{5}-2 \sqrt{5}-\sqrt{5}}\right) \\

=\frac{-1}{2 \sqrt{5}} \log \left(\frac{2 \sqrt{5}-\sqrt{5}-3}{-2 \sqrt{5}+\sqrt{5}-3}\right)

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads