Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 19 Definite Integrals Exercise Revision Exercise question 36

Answers (1)

Answer:  0

Hint: To solve the equation, the value of negative is always zero

Given:  \int_{-a}^{a} \frac{x e^{x^{2}}}{1+x^{2}} d x

Solution:

\begin{aligned} &\int_{-a}^{a} f(x) d x=\int_{-a}^{a} f(a-a-x) d x \\ & \end{aligned}

=\int_{-a}^{a} f(-x) d x

\begin{aligned} &=-\int_{-a}^{a} f(x) d x \\ & \end{aligned}

I=\int_{-a}^{a} \frac{(-x) e^{x^{2}}}{1+x^{2}} d x \\

2 I=0 \\

I=0

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads