Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 19 Definite Integrals Excercise 19.3 Question 23

Answers (1)

Answer:  0

Hint: We will use the property of definite integrals.

Given:  \int_{0}^{\pi} \cos x|\cos x| d x

Solution:

                I=\int_{0}^{\pi} \cos x|\cos x| d x                                                       … (i)

Consider,  f(x)=\cos x|\cos x|

Now, use the property:   \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x

                 I=\int_{0}^{\pi} \cos (\pi-x)|\cos (\pi-x)| d x \\

                =\int_{0}^{\pi}-\cos (x)|\cos (x)| d x \\

                \begin{aligned} & &I=\int_{0}^{\pi}-\cos (x)|\cos (x)| d x \end{aligned}                                       … (ii)

Adding (i) and (ii) , we get

                \begin{aligned} &2 I=0 \\ & \end{aligned}

                I=0

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads