Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 8 maths textbook solution.

Answers (1)

Answer:- 0

Hints:-  You must know the integration rules of trigonometric functions and its limits

Given:- \int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x

Solution : \int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x

Using substitute x=\frac{1}{t}

We get -\int_{0}^{1} \frac{\log x}{1+x^{2}} d x=\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x

And \therefore \int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x=0

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads