Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise Revision Exercise Question 45 Maths Textbook Solution.

Answers (1)

Answer:  2-\sqrt{2}

Hint: To solve this equation we will split the x

Given:  \int_{0}^{15}\left[x^{2}\right] d x

Solution: I= \int_{0}^{15}\left[x^{2}\right] d x

\begin{aligned} &I=\int_{0}^{\frac{3}{2}}(x)^{2} d x \\ & \end{aligned}

I=\int_{0}^{1} 0 d x+\int_{1}^{\sqrt{2}} 1 d x+\int_{\sqrt{2}}^{\frac{3}{2}} 2 d x

\begin{aligned} &I=0+[x]_{1}^{\sqrt{2}}+[2 x]_{\sqrt{2}}^{\frac{3}{2}} \\ & \end{aligned}

I=(\sqrt{2}-1)+(3-2 \sqrt{2}) \\

I=2-\sqrt{2}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads