Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise Revision Exercise Question 65 Maths Textbook Solution.

Answers (1)

Answer:   \frac{1}{e^{2}}\left[1-\frac{1}{e}\right]

Hint: To solve the given statement use the formula of  e^{-x}

Given:  \int_{2}^{3} e^{-x} d x

Solution:  \int_{2}^{3} e^{-x} d x

\begin{aligned} &=\left[-e^{-x}\right]_{2}^{3} \\ & \end{aligned}

=\left(-e^{-3}\right)-\left(-e^{-2}\right) \\

=-e^{-3}+e^{-2} \\

=-\frac{1}{e^{3}}+\frac{1}{e^{2}} \\

=\frac{1}{e^{2}}\left[1-\frac{1}{e}\right]

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads