Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 22 Algebra of Vectors  Exercise Very Short Answer Type Question 26 Maths Textbook Solution.

Answers (1)

Answer: \frac{1}{\sqrt{3}}\left ( \hat{i}+\hat{j}+\hat{k} \right )

Hint: You must know the rules of vector functions

Given:\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i} find unit vector in the direction of  \vec{a}+\vec{b}+\vec{c}

Solution:\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}

Then,

\begin{aligned} &\vec{a}+\vec{b}+\vec{c}=\hat{i}+\hat{j}+\hat{j}+\hat{k}+\hat{k}+\hat{i} \\ &=2(\hat{i}+\hat{j}+\hat{k}) \\ &\therefore|\vec{a}+\vec{b}+\vec{c}|=\sqrt{2^{2}+2^{2}+2^{2}} \\ &=\sqrt{4+4+4} \\ &=\sqrt{12} \\ &=2 \sqrt{3} \end{aligned}

Therefore, unit vector in the direction of

\vec{a}+\vec{b}+\vec{c}=\frac{2(\hat{i}+\hat{j}+\hat{k})}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads