Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 22 Algebra of Vectors Exercise 22.7 Question 12

Answers (1)

Answer:

AB and CD intersect at the point P

Hint:

If \overrightarrow{A B} \& \overrightarrow{C D}   intersect at P, it makes A-P-B collinear and C-P-D collinear. So prove they are collinear  

Given:

\begin{aligned} &A=-2 \hat{i}+3 \hat{j}+5 \hat{k} \\ & \end{aligned}
B=7 \hat{i}+0 \hat{j}-\hat{k}=7 \hat{i}-\hat{k} \\
C=-3 \hat{i}-2 \hat{j}-5 \hat{k} \\
D=3 \hat{i}+4 \hat{j}+7 \hat{k} \\
P=1 \hat{i}+2 \hat{j}+3 \hat{k}

Solution:

\begin{aligned} &A=-2 \hat{i}+3 \hat{j}+5 \hat{k} \\ &B=7 \hat{i}+0 \hat{j}-\hat{k}=7 \hat{i}-\hat{k} \\ &C=-3 \hat{i}-2 \hat{j}-5 \hat{k} \\ &D=3 \hat{i}+4 \hat{j}+7 \hat{k} \\ &P=1 \hat{i}+2 \hat{j}+3 \hat{k} \end{aligned}

\overrightarrow{A P}=  Position vector of P – Position vector of A

\begin{aligned} &=(\hat{i}+2 \hat{j}+3 \hat{k})-(-2 \hat{i}+3 \hat{j}+5 \hat{k})\\ &=(1+2) \hat{i}+(2-3) \hat{j}+(3-5) \hat{k}\\ &=3 \hat{i}-\hat{j}-2 \hat{k} \end{aligned}                           … (i)

\overrightarrow{P B}  Position vector of B – Position vector of P

\begin{aligned} &=(7 \hat{i}-\hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})\\ & \end{aligned}

=(7-1) \hat{i}+(0-2) \hat{j}+(-1-3) \hat{k}\\

=6 \hat{i}-2 \hat{j}-4 \hat{k}\\

=2(3 \hat{i}-\hat{j}-2 \hat{k}) \\         cgfy… (ii)

\overline{P B}=2 \overrightarrow{A P}

Thus, A-P-B are collinear

\overrightarrow{C P}=  Position vector of P – Position vector C

\begin{aligned} &=(\hat{i}+2 \hat{j}+3 \hat{k})-(-3 \hat{i}-2 \hat{j}-5 \hat{k}) \\ &=(1+3) \hat{i}+(2+2) \hat{j}+(3+5) \hat{k} \\ &=4 \hat{i}+4 \hat{j}+8 \hat{k} \\ &=4(\hat{i}+\hat{j}+2 \hat{k}) \end{aligned}

\overrightarrow{P D}=  Position vector of D – Position vector of P

\begin{aligned} &=(3 \hat{i}+4 \hat{j}+7 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k}) \\ &=(3-1) \hat{i}+(4-2) \hat{j}+(7-3) \hat{k} \\ &=2 \hat{i}+2 \hat{j}+4 \hat{k} \\ &=2(\hat{i}+\hat{j}+2 \hat{k}) \\ &\overrightarrow{P D}=\frac{2}{4} \overrightarrow{C P} \\ &\overrightarrow{P D}=\frac{1}{2} \overrightarrow{C P} \end{aligned}

Thus, \overrightarrow{P D} \& \overline{C P}  are collinear

If A-P-B are collinear and also C-P-D are collinear

Hence  \overrightarrow{A B} \text { and } \overrightarrow{C D}  intersect at P

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads