Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 22 Algebra of Vectors Exercise 22.7 Question 8

Answers (1)

Answer:

1

Hint:

Represent point in form of vectors and use \overrightarrow{A B}=\lambda \overrightarrow{B C}

Given:

Points  A(m,-1), B(2,1), C(4,5)   are collinear

Solution:

\begin{aligned} &A=m \hat{i}-\hat{j} \\ & \end{aligned}

B=2 \hat{i}+\hat{j} \\

C=4 \hat{i}+5 \hat{j} \\

\overrightarrow{A B}=(2 \hat{i}+\hat{j})-(m \hat{i}-\hat{j}) \\

=(2-m) \hat{i}+(1+1) \hat{j} \\

=(2-m) \hat{i}+2 \hat{j} \\

\overrightarrow{B C}=(4 \hat{i}+5 \hat{j})-(2 \hat{i}+\hat{j}) \\

=(4-2) \hat{i}+(5-1) \hat{j} \\

=2 \hat{i}+4 \hat{j}

If they are collinear then

 \begin{aligned} &\overrightarrow{A B}=\lambda \overrightarrow{B C} \\ &(2-m) \hat{i}+2 \hat{j}=\lambda(2 \hat{i}+4 \hat{j}) \end{aligned}

Comparing

\begin{aligned} &2=\lambda(4) \\ &\lambda=\frac{1}{2} \\ &(2-m)=\lambda(2) \end{aligned}

Put the value of  \lambda

\begin{aligned} &2-m=\frac{1}{2} \times 2 \\ &2-m=1 \\ &m=2-1 \\ &m=1 \end{aligned}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads