Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 22 Algebra of Vectors Exercise 22 .7 Question 7

Answers (1)

Answer:

Given position vectors are collinear

Hint:

Just prove that one vector can be represented in form of another

Given:

2 \hat{i}-3 \hat{j}+4 \hat{k} \text { And }-4 \hat{i}+6 \hat{j}-8 \hat{k}

Solution:

Let,

\begin{aligned} &\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k} \\ & \end{aligned}                      … (i)

\vec{b}=-4 \hat{i}+6 \hat{j}-8 \hat{k} \\

\vec{b}=-2(2 \hat{i}-3 \hat{j}+4 \hat{k}) \\

\vec{b}=-2 \vec{a}                            (From (i))

Thus  \vec{a} \& \vec{b}   are collinear

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads