Get Answers to all your Questions

header-bg qa

Explain Solution R.D. Sharma Class 12 Chapter 22 Algebra of Vectors  Exercise 22.2 Question 10 Maths Textbook Solution.

Answers (1)

Answer:

We need to prove that

Hint:

Use triangle law of addition.

Given :

ABCDEF is a hexagon

Solution:

Given ,

ABCDEF is a regular hexagon.

From the triangle law of addition,

\begin{aligned} &\overrightarrow{A C}+\overrightarrow{C D}=\overrightarrow{A D}\\ \end{aligned}

\begin{aligned} &\overrightarrow{A C}+\overrightarrow{A F}=\overrightarrow{A D}\\ \end{aligned}

             \begin{aligned} &\because|\overrightarrow{C D}|=|\overrightarrow{A F}|\\ \end{aligned}

\begin{aligned} &\overrightarrow{C D} \text { parallel to } \overrightarrow{A F}: C D=A F\\ \end{aligned}

\begin{aligned} &\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A F}+\overrightarrow{A D}+\overrightarrow{A C}+\overrightarrow{A E}\\ &=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A D}+\overrightarrow{A C} \quad \because|\overrightarrow{A E}|=|\overrightarrow{E D}|\\ &=2 \overrightarrow{A D}+\overrightarrow{E D}+\overrightarrow{A E A E} \text { parallel to } \overrightarrow{E D} \therefore \overrightarrow{A B}=\overrightarrow{E D}\\ &=2 \overrightarrow{A D}+\overrightarrow{A D}\\ &=3 \overrightarrow{A D} \quad[\overrightarrow{A B}+\overrightarrow{A E}=\overrightarrow{E D}+\overrightarrow{A E}=\overrightarrow{A D}\\ &=3(2 \cdot \overrightarrow{A O}) \quad[O \text { is the mid point and also the mid point of } \mathrm{AD}, \mathrm{OA}=\mathrm{OD}, \mathrm{AD}=2 \cdot \overrightarrow{\mathrm{AO}}]\\ &=6 \overrightarrow{A O} \end{aligned}

(proved)

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads