Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 22 Algebra of Vectors  Exercise Very Short Answer Type Question 28 Maths Textbook Solution.

Answers (1)

Answer: \theta =30^{o}

Hint: You must know the rules of vector functions

Given: A unit vector \vec{r}make angles \frac{\pi }{3},\frac{\pi }{2} with \hat{j} &\hat{k} and an acute angle \theta with \hat{i}.find \theta

Solution: Angle \frac{\pi }{3},\frac{\pi }{2} with \hat{j} &\hat{k}

   Let l , m , n be the direction cosines

\begin{aligned} &l=\cos \theta, m=\cos \frac{\pi}{3}, n=\cos \frac{\pi}{2} \\ &l=\cos \theta, m=\frac{1}{2}, n=0 \\ \end{aligned}

Now,\begin{aligned} &l^{2}+m^{2}+n^{2}=1 \\ \end{aligned}

\begin{aligned} &l^{2}+\frac{1}{4}+0=1 \\ &l^{2}=\frac{3}{4} \\ &l=\pm \sqrt{\frac{3}{4}} \Rightarrow \pm \frac{\sqrt{3}}{2} \\ \end{aligned}

But we know angle made with \hat{i}is an acute angle so, we use the positive value.

\therefore \theta =30^{o}                                                                \left [ \therefore \cos ^{-1}\left ( \frac{\sqrt{3}}{2} \right )=30^{0} \right ]

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads