Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D. Sharma Maths Class 12 Chapter 22 Algebra of Vectors  Exercise 22.9 Question 10 Maths Textbook Solution.

Answers (1)

Answer:\theta =\frac{\pi }{3}, components of \vec{a} are \frac{1}{2},\frac{1}{\sqrt{2}},\frac{1}{2}

Given: A unit vector \vec{a} makes an angle \frac{\pi }{3}with\hat{i},\frac{\pi }{3}with \hat{j}and an acute angle \thetawith \hat{k}, then find \theta and hence the component of \vec{a}

Hint: Find x, y, z

Explanation: Let us take a unit vector \vec{a}=x\hat{i}+y\hat{j}+z\hat{k}

So magnitude of \vec{a}=\mid \vec{a}\mid =1

Angle \vec{a} with \hat{i}=\frac{\pi }{3}

\begin{aligned} &\vec{a} \cdot \hat{i}=|\vec{a}||\vec{i}| \cos \frac{\pi}{3} \\ &(x \hat{i}+\hat{y j}+z \hat{k}) \cdot \hat{i}=1 \times 1 \times \frac{1}{2} \\ &(x \hat{i}+\hat{y j}+z \hat{k})(1 \hat{i}+0 \hat{j}+0 \hat{k})=\frac{1}{2} \\ &(x \times 1)+(y \times 0)+(z \times 0)=\frac{1}{2} \\ &x+0+0=\frac{1}{2} \\ &x=\frac{1}{2} \end{aligned}

Angle of \vec{a} with \hat{j}=\frac{\pi }{4}

\begin{aligned} &\vec{a} \cdot \hat{j}=|\vec{a}||\vec{j}| \cos \frac{\pi}{4} \\ &(x \hat{i}+\hat{j}+z \hat{k}) \cdot \hat{j}=1 \times 1 \times \frac{1}{\sqrt{2}} \\ &(x \hat{i}+\hat{j}+z \hat{k}) \cdot(0 \hat{i}+1 \hat{j}+0 \hat{k})=\frac{1}{\sqrt{2}} \\ &(x \times 0)+(y \times 1)+(z \times 0)=\frac{1}{\sqrt{2}} \\ &0+y+0=\frac{1}{\sqrt{2}} \end{aligned}

y=\frac{1}{\sqrt{2}}

Also,

Angle of  \vec{a} with \vec{k}=0

\begin{aligned} &\vec{a} \cdot \hat{k}=|\vec{a}||\vec{k}| \times \cos \theta \\ &(x \hat{i}+\hat{j}+z \hat{k}) \cdot(0 \hat{i}+0 \hat{j}+1 \hat{k})=1 \times 1 \times \cos \theta \\ &(\mathrm{x} \times 0)+(\mathrm{y} \times 0)+(\mathrm{z} \times 1)=\cos \theta \\ &0+0+\mathrm{z}=\cos \theta \\ &\mathrm{Z}=\cos \theta \end{aligned}

 Now,

Magnitude of \vec{a}=\sqrt{\left ( x \right )^{2}+\left ( y \right )^{2}+\left ( z \right )^{2}}

\begin{aligned} &1=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\cos ^{2}} \theta \\ &1=\sqrt{\left(\frac{1}{4}\right)+\left(\frac{1}{2}\right)+\cos ^{2}} \theta \\ &1=\sqrt{\frac{3}{4}+\cos ^{2}} \theta \\ \end{aligned}

Squaring on both sides

\left ( \sqrt{\frac{3}{4}}+\cos ^{2}\theta ^{2} \right )=1^{2}

\begin{aligned} &\frac{3}{4}+\cos ^{2} \theta=1 \\ &\cos ^{2} \theta=1-\frac{3}{4} \\ &\cos ^{2} \theta=\frac{1}{4} \\ &\cos \theta=\pm \frac{1}{2} \end{aligned}

Since \theta is an acute angle

So,\theta < 90^{o}

\therefore \theta is in 1st Quadrant

And \cos \thetais positive in 1st Quadrant

So, \cos \theta =\frac{1}{2}

\theta =60^{o}=\frac{\pi }{3}

And z=\cos \theta =\cos 60^{o}=\frac{1}{2}

Hence x=\frac{1}{2},y=\frac{1}{2},z=\frac{1}{2}

The required vector \vec{a} is \frac{1}{2}\hat{i}+\frac{1}{\sqrt{2}}\hat{j}+\frac{1}{2}\hat{k}

So, components of \vec{a} are  \frac{1}{2},\frac{1}{\sqrt{2}} and \frac{1}{2}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads