Get Answers to all your Questions

header-bg qa

Provide Solution For  R. D. Sharma Maths Class 12 Chapter 22 Algebra of Vectors  Exercise Very Short Answer Type  Question 13 Maths Textbook Solution.

Answers (1)

Answer: \lambda =2

Hint: You must know the rules of vector functions

Given: If D is the mid-point of sides BC of a triangle ABC such \vec{AB}+\vec{AC}=\lambda \vec{AD} find \lambda

Solution: D is mid-point of side BC of a ABC, \vec{AB}+\vec{AC}=\lambda \vec{AD}

Let \vec{a},\vec{b},\vec{c}is a position vectors of AB, BC, CA

            Now, the position vector of D is \frac{\vec{b}+\vec{c}}{2}

            Then,

                        \vec{AB}=\vec{b}-\vec{a}

                        \vec{AC}=\vec{c}-\vec{a}

\begin{gathered} \overrightarrow{A D}=\frac{\vec{b}+\vec{c}}{2}-\vec{a} \\ \therefore \overrightarrow{A B}+\overline{A C}=\lambda \overrightarrow{A D} \\ (\vec{b}-\vec{a})+(\vec{c}-\vec{a})=\lambda\left(\frac{\vec{b}+\vec{c}-2 \vec{a}}{2}\right) \\ \vec{b}-\vec{a}+\vec{c}-\vec{a}=\lambda\left(\frac{\vec{b}+\vec{c}-2 \vec{a}}{2}\right) \\ (\vec{b}+\vec{c}-2 \vec{a})\left(\frac{2}{\vec{b}+\vec{c}-2 \vec{a}}\right)=\lambda \\ \therefore \lambda=2 \end{gathered}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads