Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 22 Algebra of Vectors Exercise 22.6 Question 13 Maths Textbook Solution.

Answers (1)

Answer:

Hence proved

Hint:

Use distance formula   \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}

Given:

A(2 \hat{\imath}-\hat{\jmath}+\hat{k}), B(\hat{\imath}-3 \hat{\jmath}-5 \hat{k}), C(3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k})

Solution:

                                      
                                

Let BC length be a, AC length be b and AB length be c.

\begin{aligned} \text { Then, } a &=C-B=\sqrt{(3-1)^{2}+(-4+3)^{2}+(-4+5)^{2}} \\ &=\sqrt{4+1+1} \\ &=\sqrt{6} \end{aligned}       [ Use distance formula of two points ]

\begin{aligned} b &=C-A=\sqrt{(3-2)^{2}+(-4+1)^{2}+(-4-1)^{2}} \\ &=\sqrt{1+9+25} \\ &=\sqrt{35} \end{aligned}                    [ Use distance formula of two points ]

 
\begin{aligned} c &=A-B=\sqrt{(2-1)^{2}+(-1+3)^{2}+(1+5)^{2}} \\ &=\sqrt{1+4+36} \\ &=\sqrt{41} \end{aligned}                         [ Use distance formula of two points ] 

\begin{aligned} &a^{2}+b^{2}=(\sqrt{6})^{2}+(\sqrt{35})^{2} \\ &=6+35 \\ &=41 \\ &=(\sqrt{41})^{2}=c^{2} \\ &a^{2}+b^{2}=c^{2} \end{aligned}

ABC is right angle triangle.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads