Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 22 Algebra of Vectors Exercise 22.7 Question 10 Maths Textbook Solution.

Answers (1)

Answer:

9

Hint:

If one vector is scalar product of another vector, then they are parallel and collinear.

Given:

\begin{aligned} &\vec{a}=2 \hat{i}-3 \hat{j} \\ &\vec{b}=-6 \hat{i}+m \hat{j} \end{aligned}    Are collinear

Solution:

\begin{aligned} &\vec{a}=2 \hat{i}-3 \hat{j} \\ & \end{aligned}

\vec{b}=-6 \hat{i}+m \hat{j} \\

\vec{b}=\lambda \vec{a} \\

(-6 \hat{i}+m \hat{j})=\lambda(2 \hat{i}-3 \hat{j}) 

Comparing we get

-6=2 \lambda \\

\lambda=-3 \\                                 … (i)

m=-3 \lambda \\

m=-3(-3) \\                 … (From (i))

\begin{aligned} & &m=9 \end{aligned}

\therefore Value of m is 9

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads