Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 22 Algebra of Vectors Exercise 22.9 Question 12 Maths Textbook Solution.

Answers (1)

Answer:     \vec{r}\pm 2\left ( \hat{i}+\hat{j}+\hat{k} \right )

Given: A vector \vec{r} is inclined at equal angles to the three axis. If the magnitude of \vec{r} is 2\sqrt{3},find \vec{r}

Hint: Use \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1

Explanation: Let\alpha ,\beta ,\gamma be the angles inclined to the three axis.

Since \vec{r} is inclined equal angle to axis

\begin{aligned} &\therefore \alpha=\beta=\gamma \\ &\Rightarrow 3 \cos ^{2} \alpha=1 \\ &\therefore \cos \alpha=\pm \frac{1}{\sqrt{3}} \\ \end{aligned}

So,

\begin{aligned} &\vec{r}=\pm \frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k}) \\ &\therefore \vec{r}=|\vec{r}| \hat{r} \\ &=2 \sqrt{3} \times\left(\pm \frac{1}{\sqrt{3}}\right)(\hat{i}+\hat{j}+\hat{k}) \\ &=\pm 2(\hat{i}+\hat{j}+\hat{k}) \\ &\therefore \vec{r}=\pm 2(\hat{i}+\hat{j}+\hat{k}) \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads