Get Answers to all your Questions

header-bg qa

Explain Solution R.D. Sharma Class 12 Chapter 22 Algebra of Vectors  Exercise Very Short Answer Type Question 36 Maths Textbook Solution.

Answers (1)

Answer\text { Thus, } \vec{a} \text { is parallel to } \vec{b} \text { and hence in the same direction. }

Hint: You must know the rules of vector functions

Given: Write two different factors having same direction

Solution:

           Let \vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}, \vec{b}=4 \hat{i}+2 \hat{j}+4 \hat{k}

The direction cosines of \hat{a} is

\begin{aligned} &l=\frac{2}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}}}=\frac{2}{\sqrt{9}}=\frac{2}{3} \\ &m=\frac{1}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}}}=\frac{1}{\sqrt{9}}=\frac{1}{3} \\ &n=\frac{2}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}}}=\frac{2}{\sqrt{9}}=\frac{2}{3} \\ \end{aligned}

And direction cosines of \vec{b} is

\begin{aligned} &l=\frac{4}{\sqrt{(4)^{2}+(2)^{2}+(4)^{2}}}=\frac{4}{\sqrt{16+4+16}}=\frac{4}{\sqrt{36}}=\frac{4}{6}=\frac{2}{3} \\ &m=\frac{2}{\sqrt{(4)^{2}+(2)^{2}+(4)^{2}}}=\frac{2}{\sqrt{16+4+16}}=\frac{2}{\sqrt{36}}=\frac{2}{6}=\frac{1}{3} \\ &n=\frac{4}{\sqrt{(4)^{2}+(2)^{2}+(4)^{2}}}=\frac{4}{\sqrt{16+4+16}}=\frac{4}{\sqrt{36}}=\frac{4}{6}=\frac{2}{3} \end{aligned}

The direction cosines of \vec{a} and \vec{b} are same.

\text { Thus, } \vec{a} \text { is parallel to } \vec{b} \text { and hence in the same direction. }

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads