Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 22 Algebra of Vectors exercise Multiple choice question 15

Answers (1)

Answer: (2,-3)

Hint: (x,y) value find

Given: If three points A, B , C  have position vectors  \begin{aligned} &\hat{i}+x \hat{j}+3 \hat{k} \\\\ &3 \hat{i}+4 \hat{j}+7 \hat{k} \\ \\ &y \hat{i}-2 \hat{j}-5 \hat{k} \end{aligned}    respective are collinear , then (x,y)=

 Solution: If

        \begin{aligned} &\hat{i}+x \hat{j}+3 \hat{k} \\\\ &3 \hat{i}+4 \hat{j}+7 \hat{k} \\\\ &y \hat{i}-2 \hat{j}-5 \hat{k} \end{aligned}

        \begin{aligned} &\overrightarrow{A B}=3 \hat{i}+4 \hat{j}+7 \hat{k}-\hat{i}-x \hat{j}-3 \hat{k}=2 \hat{i}+(4-x) \hat{j}+4 \hat{k} \\\\ &\overrightarrow{B C}=y \hat{i}-2 \hat{j}-5 \hat{k}-3 \hat{i}-4 \hat{j}-7 \hat{k}=(y-3) \hat{i}-6 \hat{j}-12 \hat{k} \end{aligned}

Since vectors are collinear.

        \begin{aligned} &\overrightarrow{A B}=\lambda \overrightarrow{B C} \\\\ &2 \hat{i}+(4-x) \hat{j}+4 \hat{k}=\lambda((y-3) \hat{i}-6 \hat{j}-12 \hat{k}) \\\\ &2=\lambda(y-3) \end{aligned}                    ...................(1)

        (4-x)=-6 \lambda                                                                             ....................(2)

        4=-12 \lambda \Rightarrow \lambda=\frac{-1}{3}

Substitute \lambda in (1) and (2)

        \begin{aligned} &2=\frac{-1}{3}(y-3) \Rightarrow-6=y-3 \Rightarrow y=-3 \\\\ &4-x=-6 \times \frac{-1}{3} \Rightarrow 4-x=2 \Rightarrow x=2 \\\\ &x=2, y=-3 \end{aligned}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads