Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter Algebra of Matrices Excercise 4.4 Question 1 Subquestion (ii).

Answers (1)

Answer: \left ( A+B\right )^{T}=A^{T}+B^{T}

Given:

A=\begin{bmatrix} 2 &-3 \\ -7& 5 \end{bmatrix}, B=\begin{bmatrix} 1 &0 \\ 2& -4 \end{bmatrix}

To prove: \left ( A+B\right )^{T}=A^{T}+B^{T}

Hint: TheA^{T} of matrix A can be obtained by reflecting the elements along its main diagonal

Solution:

                   \left ( A+B\right )^{T}=A^{T}+B^{T}

R.H.S:

               A^{T}=\begin{bmatrix} 2 &-7 \\ 3& 5 \end{bmatrix}, B^{T}=\begin{bmatrix} 1 &2 \\ 0& -4 \end{bmatrix}

              A^{T}B^{T}=\begin{bmatrix} 2 & -7\\ 3 & 5 \end{bmatrix}+\begin{bmatrix} 1 &2\\ 0 &-4 \end{bmatrix}

                            =\begin{bmatrix} 3 & -5\\ -3& -1 \end{bmatrix}                                                                                         …… (1)

               \left ( A+B \right )^{T}=\left ( \begin{bmatrix} 2 & -3\\ -7 & 5 \end{bmatrix}+\begin{bmatrix} 1 &0\\ 2 &-4 \end{bmatrix} \right )

                                 =\left ( \begin{bmatrix} 2+1 & -3+0\\ -7+2 & 5-4 \end{bmatrix} \right )

                                  =\left ( \begin{bmatrix} 3 & -3\\ -5 & 1 \end{bmatrix} \right )^{T}

                                 = \begin{bmatrix} 3 & -5\\ -3 & 1 \end{bmatrix} -\left ( 2 \right )

From 1 &  2

               \left ( A+B\right )^{T}=A^{T}+B^{T}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads