Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Algebra of matrices exercise 4.3 question 58 maths textbook solution

Answers (1)


Answer: Hence proved,

A^{n}=\left[\begin{array}{cc}\cos n \theta & i \sin n \theta \\ i \sin n \theta & \cos n \theta\end{array}\right] for all n \in N

Hint: We use the principle of mathematical induction.


A=\left[\begin{array}{cc}\cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta\end{array}\right]

To show that:

A^{n}=\left[\begin{array}{cc}\cos n \theta & i \sin n \theta \\ i \sin n \theta & \cos n \theta\end{array}\right] for all n \in N                  …(i)


step 1: Put n=1 in eqn (i)

A^{1}=\left[\begin{array}{cc}\cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta\end{array}\right]

So,A^n is true for n=1

Let, A^n is true for n=k, so

A^{k}=\left[\begin{array}{cc}\cos k \theta & i \sin k \theta \\ i \sin k \theta & \cos k \theta\end{array}\right]   ... (ii)

Now, we have to show that

A^{k+1}=\left[\begin{array}{cc}\cos (k+1) \theta & i \sin (k+1) \theta \\ i \sin (k+1) \theta & \cos (k+1) \theta\end{array}\right]


=\left[\begin{array}{cc} \cos k \theta & i \sin k \theta \\ i \sin k \theta & \cos k \theta \end{array}\right]\left[\begin{array}{cc} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{array}\right]

=\left[\begin{array}{cc} \cos k \theta \cos \theta+i^{2} \sin k \theta \sin \theta & i \cos k \theta \sin \theta+i \sin k \theta \cos \theta \\ i \sin k \theta \cos \theta+i \cos k \theta \sin \theta & i^{2} \sin k \theta \sin \theta+\cos \theta \cos k \theta \end{array}\right] \\\\

=\left[\begin{array}{cc} \cos (k+1) \theta & i \sin (k+1) \theta \\ i \sin (k+1) \theta & \cos (k+1) \theta \end{array}\right]

So, A^n is true for n=k+1 whenever it is true for n=k

Hence, by principle of mathematical induction, A^n is true for all positive integers n.

Posted by


View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support