#### Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.1 Question 4 Suquestion (i) Maths Textbook Solution.

Answer: $a_{ij}$$= i\times j$,$A= \begin{bmatrix} 1 &2 &3 \\ 2& 4& 6 \end{bmatrix}$
Given: Here given that matrix of order $2\times 3$
$A= \left [ a_{ij} \right ]_{2\times 3}$
Here we have to construct$2\times 3$  matrix as $a_{ij}$$= i\times j$

Hint:  We have to construct the matrix according to the question
Solution:  Given $a_{ij}$$= i\times j$
Let  $A= \left [ a_{ij} \right ]_{2\times 3}$
So, the elements in a $2\times 3$ matrix are $a_{11},a_{12},a_{13},a_{21},a_{22},a_{23}$
$A= \begin{bmatrix} a_{11} & a_{12} &a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$
$\! \! \! \! \! \! \! \! \! a_{11}= 1\times 1= 1\\a_{12}= 1\times 2= 2\\a_{13}= 1\times 3= 3$                 $\! \! \! \! \! \! \! \! \! a_{21}= 2\times 1= 2\\a_{22}= 2\times 2= 4\\a_{23}= 2\times 3= 6$
Substituting these values in Matrix $A$, we get
$A= \begin{bmatrix} 1 &2 &3 \\ 2& 4& 6 \end{bmatrix}$
Hence this is the required answer.