#### Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.1 Question 4 Subquestion (iii) Maths Textbook Solution.

Answer: $A= \begin{bmatrix} 2 &3 &4 \\ 3& 4& 5 \end{bmatrix}$
Given: Here given that matrix of order $2\times 3$
$A= \left [ a_{ij} \right ]_{2\times 3}$
Here we have to construct the matrix according to $a_{ij}= 2i+j$
Hint: First we have to simply adding the row elements with column element as given
question and then construct matrix.
Solution: Let $A= \left [ a_{ij} \right ]_{2\times 3}$
So, the elements in a $2\times 3$ matrix are $a_{11},a_{12},a_{13},a_{21},a_{22},a_{23}$
$A= \begin{bmatrix} a_{11} & a_{12} &a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$
$\! \! \! \! \! \! \! \! \! a_{11}= 1+ 1= 2\\a_{12}= 1+2= 3\\a_{13}= 1+3= 4$             $\! \! \! \! \! \! \! \! \! a_{21}= 2+ 1= 3\\a_{22}= 2+ 2= 4\\a_{23}= 2+ 3= 5$
Substituting these values in Matrix $A$, we get
$A= \begin{bmatrix} 2 &3 &4 \\ 3& 4& 5 \end{bmatrix}$
Hence this is the required answer.