Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.1 Question 6 Subquestion (iv) Maths Textbook Solution.

Answers (1)

Answer: A= \begin{bmatrix} 1 &2 &3 &4\\ 1 &2 &3 &4 \\ 1 &2 &3 &4 \end{bmatrix}

Given:  a_{ij}= j
             Here we have to construct 3\times 4  matrix according to  a_{ij}= j

Hint: First we have to find all the elements of matrix according to given as  a_{ij}= j

Solution: Here  a_{ij}= j

                  Let  A= \left [ a_{ij} \right ]_{3\times 4}

So, A= \begin{bmatrix} a_{11} &a_{12} &a_{13} & a_{14}\\ a_{21} &a_{22} & a_{23} & a_{24}\\ a_{31} & a_{32} & a_{33} &a_{34} \end{bmatrix}_{3\times 4}

\! \! \! \! \! \! \! \! \! a_{11}= 1\\a_{12}= 2\\a_{13}=3\\a_{14}= 4               \! \! \! \! \! \! \! \! \! a_{21}= 1\\a_{22}= 2\\a_{23}=3\\a_{24}= 4            \! \! \! \! \! \! \! \! \! a_{31}= 1\\a_{32}= 2\\a_{33}=3\\a_{34}= 4

Substituting these values in Matrix A , we get

A= \begin{bmatrix} 1 &2 &3 &4\\ 1 &2 &3 &4 \\ 1 &2 &3 &4 \end{bmatrix}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads