Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Algebra of matrices exercise 4.3 question 17 (i) maths textbook solution

Answers (1)

Answer:

Hence, verify the distribution of matrix multiplication over matrix addition A(B+C)=A B+ A C

Hint: Matrix multiplication is only possible, when the number of columns of first matrix is equal to the number of rows of second matrix.

Given:A=\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 2 & 1\end{array}\right], C=\left[\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right]

Consider,

A(B+C) \\\\ =\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]\left(\left[\begin{array}{cc}-1 & 0 \\ 2 & 1\end{array}\right]+\left[\begin{array}{ll}0 & 1 \\ 1 & -1\end{array}\right]\right) \\\\\\ = \left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]\left(\left[\begin{array}{cc}-1+0 & 0+1 \\ 2+1 & 1-1\end{array}\right]\right)=\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]\left[\begin{array}{cc}-1 & 1 \\ 3 & 0\end{array}\right] \\\\

\begin{bmatrix} -1-3 & 1+0 \\ -0+6& 0+0 \end{bmatrix} 

A(B+C)=\left[\begin{array}{cc} -4 & 1 \\ 6 & 0 \end{array}\right]

 

A B+A C=\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]\left[\begin{array}{cc}-1 & 0 \\ 2 & 1\end{array}\right]+\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]\left[\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right]\\\\\\=\left[\begin{array}{cc}1(-1)+(-1)(2) & 1(0)+(-1)(1) \\0(-1)+2(2) & 0(0)+2(1)\end{array}\right]+\left[\begin{array}{cc}(1)(0)+(-1)(1) & 1(1)+(-1)(-1) \\ 0(0)+2(1) & 0(1)+2(-1)\end{array}\right] \\\\\\=\left[\begin{array}{ll}-1-2 & 0-1 \\ -0+4 & 0+2\end{array}\right]+\left[\begin{array}{ll}0-1 & 1+1 \\ 0+2 & 0-2\end{array}\right]

A B+A C=\left[\begin{array}{cc} -4 & 1 \\ 6 & 0 \end{array}\right]

From equation i & equation ii

A(B+C)=A B+ A C

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads