Get Answers to all your Questions

header-bg qa

Explain solution for rd sharma class class 12 chapter Algebra of matrices exercise 4.3 question 65 sub question (i) math

Answers (1)

Answer:

A=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right], such that AB \neq BA

Hint: Matrix multiplication is only possible, when the number of columns of first matrix is equal to the number of rows of second matrix.

Solution:

Let

A=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]\ \ and \ \ B=\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right]

\begin{array}{l} A B=\left[\begin{array}{ll} a & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{ll} 0 & b \\ 0 & 0 \end{array}\right]\\\\ =\left[\begin{array}{cc} 0+0 & a b+0 \\ 0+0 & 0+0 \end{array}\right]\\\\ A B=\left[\begin{array}{cc} 0 & a b \\ 0 & 0 \end{array}\right] ... (i)\\\\ B A=\left[\begin{array}{ll} 0 & b \\ 0 & 0 \end{array}\right]\left[\begin{array}{ll} a & 0 \\ 0 & 0 \end{array}\right]\\\\ =\left[\begin{array}{ll} 0+0 & 0+0 \\ 0+0 & 0+0 \end{array}\right]\\\\ B A=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right] \quad \cdots (ii) \ \end{array}

From equation i & ii

AB \neq BA

When A=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right]

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads