Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 4 Algebra of Matrices exercise Fill in the blank question 12 maths

Answers (1)

Answer:

 x = 0

Hint:

 Use the basics of identity matrix.

Given:

 A=\left[\begin{array}{ll} x & 1 \\ 1 & 0 \end{array}\right] \text { and } A^{2} \text { the identity matrix. }

Solution:

\begin{aligned} &{\left[\begin{array}{ll} x & 1 \\ 1 & 0 \end{array}\right] \times\left[\begin{array}{ll} x & 1 \\ 1 & 0 \end{array}\right]=I} \\ &{\left[\begin{array}{ll} x^{2}+1 & x+0 \\ x+0 & 1+0 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]} \\ &\text { So, } x+0=0 \\ &x=0 \end{aligned}

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads