Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 4 Algebra of Matrices exercise Fill in the blank question 36 maths

Answers (1)

Answer:

 \begin{aligned} &\text { i) } A B=B^{T} A^{T} \\ &\text { ii) } k A=k(A) \\ &\text { iii) } k(A-B)=k A-k B \end{aligned}

Hint:

 We must know the basic of square matrix

Given:

 A and B are square matrix

Solution:

\begin{aligned} &\text { i) } A B=B^{T} A^{T} \\ &\text { because }[A]_{m \times n}[B]_{m \times 9} \\ &\text { so } \\ &A B_{m \times 9} \end{aligned}

\begin{aligned} &\text { ii) } k A=k(A) \end{aligned}

If k is scalar we can remove from A

\begin{aligned} &\text { iii) } k(A-B)=k A-k B \end{aligned}

If k is scalar we can multiply with A and B separately

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads