Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Algebra of matrices exercise 4.3 question 27 math

Answers (1)

Answer: Hence prove, A^{2}-A+2 I=0

Hint: Matrix multiplication is only possible, when the number of columns of first matrix is equal to the number of rows of second matrix.

Given: A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right] and \ \ I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]

Prove: A^{2}-A+2 I=0

Consider,

A^{2}=A A \\\\ A^{2}=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]\\\\ A^{2}=\left[\begin{array}{ll}3(3)+(-2)(4) & 3(-2)+(-2)(-2) \\ 4(3)+(-2)(4) & 4(-2)+(-2)(-2)\end{array}\right]\\\\ A^{2}=\left[\begin{array}{cc}9-8 & -6+4 \\ 12-8 & -8+4\end{array}\right]\\\\ A^{2}=\left[\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]

 Now, put the value of A^2 in the given equation A^2 - A + 2l, we get

=\left[\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]-\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]+2\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \\\\\\ =\left[\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]-\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]+\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\\\\\\ =\left[\begin{array}{ll}1-3+2 & -2+2+0 \\ 4-4+0 & -4+2+2\end{array}\right]

=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right]

Hence, A^{2}-A+2 I=0   

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads